About find
find searches for files in a directory hierarchy.
Syntax
find [-H] [-L] [-P] [-D debugopts] [-Olevel] [path...] [expression]
Description
find searches the directory tree rooted at
each given file name by evaluating the given expression from left to
right, according to the rules of precedence (see "Operators", below), until the outcome is known (the left hand side is false for and operations, true for or), at which point find moves on to the next file name.
Options
The -H, -L and -P options control the treatment of symbolic links. Command-line
arguments following these are taken to be names of files or directories
to be examined, up to the first argument that begins with `-', or the
argument `(' or `!'. That argument and any following arguments are taken
to be the expression describing what is to be searched for. If no paths
are given, the current directory is used. If no expression is given,
the expression -print is used (but you should probably consider using -print0 instead, anyway).
This manual page talks about `options' within the
expression list. These options control the behaviour of find but are
specified immediately after the last path name. The five `real' options -H, -L, -P, -D and -O must appear before the first path name, if at all. A double dash --
can also be used to signal that any remaining arguments are not options
(though ensuring that all start points begin with either `./' or `/' is generally safer if you use wildcards in the list of start points).
Options are as follows:
-P |
Never follow symbolic links. This is the default. When find
examines or prints information a file, and the file is a symbolic link,
the information used shall be taken from the properties of the symbolic
link itself. |
-L |
Follow symbolic links. When find examines or prints
information about files, the information used shall be taken from the
properties of the file to which the link points, not from the link
itself (unless it is a broken symbolic link or find is unable to examine
the file to which the link points). Use of this option implies -noleaf. If you later use the -P option, -noleaf will still be in effect. If -L
is in effect and find discovers a symbolic link to a subdirectory
during its search, the subdirectory pointed to by the symbolic link will
be searched.
When the -L option is in effect, the -type
predicate will always match against the type of the file that a symbolic
link points to rather than the link itself (unless the symbolic link is
broken). Using -L causes the -lname and -ilname predicates always to return false. |
-H |
Do not follow symbolic links, except while processing the command line arguments. When find
examines or prints information about files, the information used shall
be taken from the properties of the symbolic link itself. The only
exception to this behaviour is when a file specified on the command line
is a symbolic link, and the link can be resolved. For that situation,
the information used is taken from whatever the link points to (that is,
the link is followed). The information about the link itself is used as
a fallback if the file pointed to by the symbolic link cannot be
examined. If -H is in effect and one of the paths specified on
the command line is a symbolic link to a directory, the contents of that
directory will be examined (though of course -maxdepth 0 would prevent this). |
If more than one of -H, -L and -P is specified,
each overrides the others; the last one appearing on the command line
takes effect. Since it is the default, the -P option should be
considered to be in effect unless either -H or -L is specified. GNU find frequently stats
files during the processing of the command line itself, before any
searching has begun. These options also affect how those arguments are
processed. Specifically, there are a number of tests that compare files
listed on the command line against a file we are currently considering.
In each case, the file specified on the command line will have been
examined and some of its properties will have been saved. If the named
file is in fact a symbolic link, and the -P option is in effect (or if neither -H nor -L
were specified), the information used for the comparison will be taken
from the properties of the symbolic link. Otherwise, it will be taken
from the properties of the file the link points to. If find
cannot follow the link (for example because it has insufficient
privileges or the link points to a nonexistent file) the properties of
the link itself will be used.
When the -H or -L options are in effect, any symbolic links listed as the argument of -newer
will be dereferenced, and the timestamp will be taken from the file to
which the symbolic link points. The same consideration applies to -newerXY, -anewer and -cnewer.
The -follow option has a similar effect to -L, though it takes effect at the point where it appears (that is, if -L is not used but -follow is, any symbolic links appearing after -follow on the command line will be dereferenced, and those before it will not).
-D debugoptions |
Print diagnostic information; this can be helpful to diagnose problems with why find
is not doing what you want. The list of debug options should be comma
separated. Compatibility of the debug options is not guaranteed between
releases of findutils. For a complete list of valid debug options, see the output of find -D help. Valid debug options include:
help |
Explain the debugging options. |
tree |
Show the expression tree in its original and optimised form. |
stat |
Print messages as files are examined with the stat and lstat system calls. The find program tries to minimise such calls. |
opt |
Prints diagnostic information relating to the optimisation of the expression tree; see the -O option. |
rates |
Prints a summary indicating how often each predicate succeeded or failed. |
|
-Olevel |
Enables query optimisation. The find
program reorders tests to speed up execution while preserving the
overall effect; that is, predicates with side effects are not reordered
relative to each other. The optimisations performed at each optimisation
level are as follows.
0 |
Equivalent to optimisation level 1. |
1 |
This is the default optimisation level and
corresponds to the traditional behaviour. Expressions are reordered so
that tests based only on the names of files (for example -name and
-regex) are performed first.
|
2 |
Any -type or -xtype tests are performed after any tests based only on the names of files, but before any tests that require information from the inode. On many modern versions of Unix, file types are returned by readdir() and so these predicates are faster to evaluate than predicates which need to stat the file first. |
3 |
At this optimisation level, the full cost-based
query optimiser is enabled. The order of tests is modified so that cheap
(i.e. fast) tests are performed first and more expensive ones are
performed later, if necessary. Within each cost band, predicates are
evaluated earlier or later according to whether they are likely to
succeed or not. For -o, predicates which are likely to succeed are evaluated earlier, and for -a, predicates which are likely to fail are evaluated earlier. |
The cost-based optimiser has a fixed idea of how likely any
given test is to succeed. In some cases the probability takes account of
the specific nature of the test (for example, -type f is assumed to be more likely to succeed than -type c). The cost-based optimiser is currently being evaluated. If it does not actually improve the performance of find,
it will be removed again. Conversely, optimisations that prove to be
reliable, robust and effective may be enabled at lower optimisation
levels over time. However, the default behaviour (i.e. optimisation
level 1) will not be changed in the 4.3.x release series. The findutils test suite runs all the tests on find at each optimisation level and ensures that the result is the same. |
Expressions
The expression is made up of options (which affect
overall operation rather than the processing of a specific file, and
always return true), tests (which return a true or false value), and actions (which have side effects and return a true or false value), all separated by operators. -and is assumed where the operator is omitted.
If the expression contains no actions other than -prune, -print is performed on all files for which the expression is true.
Expressions Options
All options always return true. Except for -daystart, -follow and -regextype,
the options affect all tests, including tests specified before the
option. This is because the options are processed when the command line
is parsed, while the tests don't do anything until files are examined.
The -daystart, -follow and -regextype options are
different in this respect, and have an effect only on tests which appear
later in the command line. Therefore, for clarity, it is best to place
them at the beginning of the expression. A warning is issued if you
don't do this.
-d |
A synonym for -depth, for compatibility with FreeBSD, NetBSD, MacOS X and OpenBSD. |
-daystart |
Measure times (for -amin, -atime, -cmin, -ctime, -mmin, and -mtime)
from the beginning of today rather than from 24 hours ago. This option
only affects tests which appear later on the command line. |
-depth |
Process each directory's contents before the directory itself. The -delete action also implies -depth. |
-follow |
Deprecated; use the -L option instead. This option dereferences symbolic links and implies -noleaf. The -follow option affects only those tests which appear after it on the command line. Unless the -H or -L option has been specified, the position of the -follow option changes the behaviour of the -newer predicate; any files listed as the argument of -newer will be dereferenced if they are symbolic links. The same consideration applies to -newerXY, -anewer and -cnewer. Similarly, the -type predicate will always match against the type of the file that a symbolic link points to rather than the link itself. Using -follow causes the -lname and -ilname predicates always to return false. |
-help, --help |
Print a summary of the command-line usage of find and exit. |
-ignore_readdir_race |
Normally, find will emit an error message when it fails to stat
a file. If you give this option and a file is deleted between the time
find reads the name of the file from the directory and the time it tries
to stat the file, no error message will be issued. This also
applies to files or directories whose names are given on the command
line. This option takes effect at the time the command line is read,
which means that you cannot search one part of the filesystem with this
option on and part of it with this option off (if you need to do that,
you will need to issue two find commands instead, one with the option and one without it). |
-maxdepth levels |
Descend at most levels (a non-negative integer) levels of directories below the command line arguments. -maxdepth 0 means only apply the tests and actions to the command line arguments. |
-mindepth levels |
Do not apply any tests or actions at levels less than levels (a non-negative integer). -mindepth 1 means process all files except the command line arguments. |
-mount |
Don't descend directories on other filesystems. An alternate name for -xdev, for compatibility with some other versions of find. |
-noignore_readdir_race |
Turns off the effect of -ignore_readdir_race. |
-noleaf |
Do not optimize by assuming that directories contain 2 fewer subdirectories than their hard link count. This option is needed when searching filesystems that do not follow the Unix directory-link convention, such as CD-ROM or MS-DOS filesystems or AFS volume mount points. Each directory on a normal Unix filesystem has at least 2 hard links: its name and its `.' entry. Additionally, its subdirectories (if any) each have a `..'
entry linked to that directory. When find is examining a directory,
after it has statted 2 fewer subdirectories than the directory's link
count, it knows that the rest of the entries in the directory are
non-directories (`leaf' files in the directory tree). If only the files'
names need to be examined, there is no need to stat them; this gives a significant increase in search speed. |
-regextype type |
Changes the regular expression syntax understood by -regex and -iregex tests which occur later on the command line. Currently-implemented types are emacs (this is the default), posix-awk, posix-basic, posix-egrep and posix-extended. |
-version, --version |
Print the find version number and exit. |
-warn, -nowarn |
Turn warning messages on or off. These
warnings apply only to the command line usage, not to any conditions
that find might encounter when it searches directories. The default
behaviour corresponds to -warn if standard input is a tty, and to -nowarn otherwise. |
-xdev |
Don't descend directories on other filesystems. |
Tests
Some tests, for example -newerXY and -samefile,
allow comparison between the file currently being examined and some
reference file specified on the command line. When these tests are used,
the interpretation of the reference file is determined by the options -H, -L and -P and any previous -follow,
but the reference file is only examined once, at the time the command
line is parsed. If the reference file cannot be examined (for example,
the stat system call fails for it), an error message is issued, and find exits with a nonzero status.
Numeric arguments can be specified as:
+n |
for greater than n; |
-n |
for less than n; |
n |
for exactly n. |
-amin n |
File was last accessed n minutes ago. |
-anewer file |
File was last accessed more recently than file was modified. If file is a symbolic link and the -H option or the -L option is in effect, the access time of the file it points to is always used. |
-atime n |
File was last accessed n*24 hours ago. When find figures out how many 24-hour periods ago the file was last accessed, any fractional part is ignored, so to match -atime +1, a file has to have been accessed at least two days ago. |
-cmin n |
File's status was last changed n minutes ago. |
-cnewer file |
File's status was last changed more recently than file was modified. If file is a symbolic link and the -H option or the -L option is in effect, the status-change time of the file it points to is always used. |
-ctime n |
File's status was last changed n*24 hours ago. See the
comments for -atime to understand how rounding affects the
interpretation of file status change times. |
-empty |
File is empty and is either a regular file or a directory. |
-executable |
Matches files which are executable and directories which
are searchable (in a file name resolution sense). This takes into
account access control lists and other permissions artefacts which the -perm test ignores. This test makes use of the access system call, and so can be fooled by NFS servers which do UID mapping (or root-squashing), since many systems implement access
in the client's kernel and so cannot make use of the UID mapping
information held on the server. Because this test is based only on the
result of the access system call, there is no guarantee that a file for
which this test succeeds can actually be executed. |
-false |
Always false. |
-fstype type |
File is on a filesystem of type type. The valid
filesystem types vary among different versions of Unix; an incomplete
list of filesystem types that are accepted on some version of Unix or
another is: ufs, 4.2, 4.3, nfs, tmp, mfs, S51K, S52K. You can use -printf with the %F directive to see the types of your filesystems. |
-gid n |
File's numeric group ID is n. |
-group gname |
File belongs to group gname (numeric group ID allowed). |
-ilname pattern |
Like -lname, but the match is case insensitive. If the -L option or the -follow option is in effect, this test returns false unless the symbolic link is broken. |
-iname pattern |
Like -name, but the match is case insensitive. For example, the patterns `fo*' and `F??' match the file names `Foo', `FOO', `foo', `fOo', etc. In these patterns, unlike filename expansion by the shell, an initial '.' can be matched by `*'. That is, find -name *bar will match the file `.foobar'. Please note that you should quote patterns as a matter of course, otherwise the shell will expand any wildcard characters in them. |
-inum n |
File has inode number n. It is normally easier to use the -samefile test instead. |
-ipath pattern |
Behaves in the same way as -iwholename. This option is deprecated, so please do not use it. |
-iregex pattern |
Like -regex, but the match is case-insensitive. |
-iwholename pattern |
Like -wholename, but the match is case-insensitive. |
-links n |
File has n links. |
-lname pattern |
File is a symbolic link whose contents match shell pattern pattern. The metacharacters do not treat `/' or `.' specially. If the -L option or the -follow option is in effect, this test returns false unless the symbolic link is broken. |
-mmin n |
File's data was last modified n minutes ago. |
-mtime n |
File's data was last modified n*24 hours ago. See the comments for -atime to understand how rounding affects the interpretation of file modification times. |
-name pattern |
Base of file name (the path with the leading directories removed) matches shell pattern pattern. The metacharacters (`*', `?', and `[ ]') match a `.' at the start of the base name. To ignore a directory and the files under it, use -prune; see an example in the description of -path.
Braces are not recognised as being special, despite the fact that some
shells including Bash imbue braces with a special meaning in shell
patterns. The filename matching is performed with the use of the fnmatch library function. Don't forget to enclose the pattern in quotes in order to protect it from expansion by the shell. |
-newer file |
File was modified more recently than file. If file is a symbolic link and the -H option or the -L option is in effect, the modification time of the file it points to is always used. |
-newerXY reference |
Compares the timestamp
of the current file with reference. The reference argument is normally
the name of a file (and one of its timestamps is used for the
comparison) but it may also be a string describing an absolute time. X and Y are placeholders for other letters, and these letters select which time belonging to how reference is used for the comparison.
a |
The access time of the file reference |
B |
The birth time of the file reference |
c |
The inode status change time of reference |
m |
The modification time of the file reference |
t |
reference is interpreted directly as a time |
Some combinations are invalid; for example, it is invalid for X to be t. Some combinations are not implemented on all systems; for example B is not supported on all systems. If an invalid or unsupported combination of XY is specified, a fatal error results. Time specifications are interpreted as for the argument to the -d option of GNU date. If you try to use the birth time of a reference
file, and the birth time cannot be determined, a fatal error message
results. If you specify a test which refers to the birth time of files
being examined, this test will fail for any files where the birth time
is unknown. |
-nogroup |
No group corresponds to file's numeric group ID. |
-nouser |
No user corresponds to file's numeric user ID. |
-path pattern |
File name matches shell pattern pattern. The metacharacters do not treat `/' or `.' specially; so, for example,
find . -path "./sr*sc"
will print an entry for a directory called `./src/misc' (if one exists). To ignore a whole directory tree, use -prune rather than checking every file in the tree. For example, to skip the directory `src/emacs' and all files and directories under it, and print the names of the other files found, do something like this:
find . -path ./src/emacs -prune -o -print
Note that the pattern match test applies to the whole file
name, starting from one of the start points named on the command line.
It would only make sense to use an absolute pathname here if the relevant start point is also an absolute path. This means that this command will never match anything:
find bar -path /foo/bar/myfile -print
The predicate -path is also supported by HP-UX find and will be in a forthcoming version of the POSIX standard. |
-perm mode |
File's permission bits are exactly mode (octal
or symbolic). Since an exact match is required, if you want to use this
form for symbolic modes, you may have to specify a rather complex mode
string. For example -perm g=w will only match files which have mode 0020 (that is, ones for which group write permission is the only permission set). It is more likely that you will want to use the `/' or `-' forms, for example -perm -g=w, which matches any file with group write permission. |
-perm -mode |
All of the permission bits mode are set for the file.
Symbolic modes are accepted in this form, and this is usually the way in
which would want to use them. You must specify `u', `g' or `o' if you use a symbolic mode. |
-perm /mode |
Any of the permission bits mode are set for the file. Symbolic modes are accepted in this form. You must specify `u', `g' or `o'
if you use a symbolic mode. If no permission bits in mode are set, this
test matches any file (the idea here is to be consistent with the
behaviour of -perm -000). |
-perm +mode |
Deprecated; this is the old way of searching for files with any of the permission bits in mode set. You should use -perm /mode instead. Trying to use the `+' syntax with symbolic modes will yield surprising results. For example, `+u+x' is a valid symbolic mode (equivalent to +u,+x, i.e. 0111) and will therefore not be evaluated as -perm +mode but instead as the exact mode specifier -perm mode and so it matches files with exact permissions 0111 instead of files with any execute bit set. If you found this paragraph confusing, you're not alone! Just use -perm /mode. This form of the -perm test is deprecated because the POSIX specification requires the interpretation of a leading `+' as being part of a symbolic mode, and so find's authors switched to using `/' instead. |
-readable |
Matches files which are readable. This takes into account access control lists and other permissions artefacts which the -perm
test ignores. This test makes use of the access system call, and so can
be fooled by NFS servers which do UID mapping (or root-squashing),
since many systems implement access in the client's kernel and so cannot make use of the UID mapping information held on the server. |
-regex pattern |
File name matches regular expression pattern. This is a match on the whole path, not a search. For example, to match a file named `./fubar3', you can use the regular expression `.*bar.' or `.*b.*3', but not `f.*r3'. The regular expressions understood by find are by default Emacs Regular Expressions, but this can be changed with the -regextype option. |
-samefile name |
File refers to the same inode as name. When -L is in effect, this can include symbolic links. |
-size [-|+]n[cwbkMG] |
File uses n units of space. If preceded by a minus sign ("-"), matches files which use less space; if preceded by a plus sign ("+"), matches files which use more. The following suffixes can be used:
b |
for 512-byte blocks (this is the default if no suffix is used) |
c |
for bytes |
w |
for two-byte words |
k |
for Kilobytes (units of 1024 bytes) |
M |
for Megabytes (units of 1048576 bytes) |
G |
for Gigabytes (units of 1073741824 bytes) |
The size does not count indirect blocks, but it does count
blocks in sparse files that are not actually allocated. Bear in mind
that the `%k' and `%b' format specifiers of -printf handle sparse files differently. The `b' suffix always denotes 512-byte blocks and never 1 Kilobyte blocks, which is different to the behaviour of -ls. |
-true |
Always true. |
-type c |
File is of type c:
b |
block (buffered) special |
c |
character (unbuffered) special |
d |
directory |
p |
named pipe (FIFO) |
f |
regular file |
l |
symbolic link; this is never true if the -L option or the -follow option is in effect, unless the symbolic link is broken. If you want to search for symbolic links when i-L is in effect, use -xtype. |
s |
socket |
D |
door (a Solaris file type) |
|
-uid n |
File's numeric user ID is n. |
-used n |
File was last accessed n days after its status was last changed. |
-user uname |
File is owned by user uname (numeric user ID allowed). |
-wholename pattern |
See -path. This alternative is less portable than -path, however. |
-writable |
Matches files which are writable. This takes into account access control lists and other permissions artefacts which the -perm
test ignores. This test makes use of the access system call, and so can
be fooled by NFS servers which do UID mapping (or root-squashing),
since many systems implement access in the client's kernel and so cannot
make use of the UID mapping information held on the server. |
-xtype c |
The same as -type unless the file is a symbolic link. For symbolic links: if the -H or -P option was specified, true if the file is a link to a file of type c; if the -L option has been given, true if c is `l'. In other words, for symbolic links, -xtype checks the type of the file that -type does not check. |
Actions
-delete |
Delete files; true if removal succeeded. If the removal failed, an error message is issued. If -delete fails, find's exit status will be nonzero (when it eventually exits). Use of -delete automatically turns on the -depth option.
Don't forget that the find command line is evaluated as an expression, so putting -delete first will make find try to delete everything below the starting points you specified. When testing a find command line that you later intend to use with -delete, you should explicitly specify -depth in order to avoid later surprises. Because -delete implies -depth, you cannot usefully use -prune and -delete together. |
-exec command ; |
Execute command; true if 0 is
returned as the exit status. All following arguments to find are taken
to be arguments to the command until an argument consisting of `;' is encountered. The string `{}'
is replaced by the current file name being processed everywhere it
occurs in the arguments to the command, not just in arguments where it
is alone, as in some versions of find. Both of these constructions might need to be escaped (with a `\')
or quoted to protect them from expansion by the shell. The specified
command is run once for each matched file. The command is executed in
the starting directory. There are unavoidable security problems
surrounding use of the -exec action; you should use the -execdir option instead. |
-exec command {} + |
This variant of the -exec action runs the specified
command on the selected files, but the command line is built by
appending each selected file name at the end; the total number of
invocations of the command will be much less than the number of matched
files. The command line is built in much the same way that xargs builds its command lines. Only one instance of `{}' is allowed within the command. The command is executed in the starting directory. |
-execdir command ;
-execdir command {} + |
Like -exec, but the specified command is run from
the subdirectory containing the matched file, which is not normally the
directory in which you started find. This a much more secure
method for invoking commands, as it avoids race conditions during
resolution of the paths to the matched files. As with the -exec action, the `+' form of -execdir
will build a command line to process more than one matched file, but
any given invocation of command will only list files that exist in the
same subdirectory. If you use this option, you must ensure that your $PATH environment variable does not reference `.';
otherwise, an attacker can run any commands they like by leaving an
appropriately-named file in a directory in which you will run -execdir. The same applies to having entries in $PATH which are empty or which are not absolute directory names. |
-fls file |
True; like -ls but write to file like -fprint. The output file is always created, even if the predicate is never matched. |
-fprint file |
True; print the full file name into file file. If file does not exist when find is run, it is created; if it does exist, it is truncated. The file names ``/dev/stdout'' and ``/dev/stderr''
are handled specially; they refer to the standard output and standard
error output, respectively. The output file is always created, even if
the predicate is never matched. |
-fprint0 file |
True; like -print0 but write to file like -fprint. The output file is always created, even if the predicate is never matched. |
-fprintf file format |
True; like -printf but write to file like -fprint. The output file is always created, even if the predicate is never matched. |
-ls |
True; list current file in ls -dils format on standard output. The block counts are of 1K blocks, unless the environment variable POSIXLY_CORRECT is set, in which case 512-byte blocks are used. |
-ok command ; |
Like -exec but ask the user first. If the user agrees, run the command. Otherwise just return false. If the command is run, its standard input is redirected from /dev/null.
The response to the prompt is matched against a pair of
regular expressions to determine if it is an affirmative or negative
response. This regular expression is obtained from the system if the `POSIXLY_CORRECT' environment variable is set, or otherwise from find's message translations. If the system has no suitable definition, find's
own definition will be used. In either case, the interpretation of the
regular expression itself will be affected by the environment variables 'LC_CTYPE' (character classes) and 'LC_COLLATE' (character ranges and equivalence classes). |
-okdir command ; |
Like -execdir but ask the user first in the same way as for -ok. If the user does not agree, just return false. If the command is run, its standard input is redirected from /dev/null. |
-print |
True; print the full file name on the standard
output, followed by a newline. If you are piping the output of find into
another program and there is the faintest possibility that the files
which you are searching for might contain a newline, then you should
seriously consider using the -print0 option instead of -print. |
-print0 |
True; print the full file name on the standard output, followed by a null character (instead of the newline character that -print uses). This allows file names that contain newlines or other types of white space to be correctly interpreted by programs that process the find output. This option corresponds to the -0 option of xargs. |
-printf format |
True; print format on the standard output, interpreting `\' escapes and `%' directives. Field widths and precisions can be specified as with the `printf' C function. Please note that many of the fields are printed as %s rather than %d, and this may mean that flags don't work as you might expect. This also means that the `-' flag does work (it forces fields to be left-aligned). Unlike -print, -printf does not add a newline at the end of the string. The escapes and directives are:
\a |
Alarm bell. |
\b |
Backspace. |
\c |
Stop printing from this format immediately and flush the output. |
\f |
Form feed. |
\n |
Newline. |
\r |
Carriage return. |
\t |
Horizontal tab. |
\v |
Vertical tab. |
\0 |
ASCII NUL. |
\\ |
A literal backslash (`\'). |
\NNN |
The character whose ASCII code is NNN (octal). |
A `\' character followed by any other character is treated as an ordinary character, so they both are printed.
%% |
A literal percent sign. |
%a |
File's last access time in the format returned by the C `ctime' function. |
%Ak |
File's last access time in the format specified by k, which is either `@' or a directive for the C `strftime' function. The possible values for k are listed below; some of them might not be available on all systems, due to differences in `strftime' between systems.
Values for k can be one of the following:
@ |
seconds since Jan. 1, 1970, 00:00 GMT, with fractional part. |
Time fields:
H |
hour (00..23) |
I |
hour (01..12) |
k |
hour ( 0..23) |
l |
hour ( 1..12) |
M |
minute (00..59) |
p |
locale's AM or PM |
r |
time, 12-hour (hh:mm:ss [AP]M) |
S |
Second (00.00 .. 61.00). There is a fractional part. |
T |
time, 24-hour (hh:mm:ss) |
+ |
Date and time, separated by `+', for example `2004-04-28+22:22:05.0'. This is a GNU extension. The time is given in the current timezone (which may be affected by setting the TZ environment variable). The seconds field includes a fractional part. |
X |
locale's time representation (H:M:S) |
Z |
time zone (e.g., EDT), or nothing if no time zone is determinable |
Date fields:
a |
locale's abbreviated weekday name (Sun..Sat) |
A |
locale's full weekday name, variable length (Sunday..Saturday) |
b |
locale's abbreviated month name (Jan..Dec) |
B |
locale's full month name, variable length (January..December) |
c |
locale's date and time (Sat Nov 04 12:02:33 EST 1989). The format is the same as for ctime and so to preserve compatibility with that format, there is no fractional part in the seconds field. |
d |
day of month (01..31) |
D |
date (mm/dd/yy) |
h |
same as b |
j |
day of year (001..366) |
m |
month (01..12) |
U |
week number of year with Sunday as first day of week (00..53) |
w |
day of week (0..6) |
W |
week number of year with Monday as first day of week (00..53) |
x |
locale's date representation (mm/dd/yy) |
y |
last two digits of year (00..99) |
Y |
year (1970..) |
|
%b |
The amount of disk space
used for this file in 512-byte blocks. Since disk space is allocated in
multiples of the filesystem block size this is usually greater than %s/512, but it can also be smaller if the file is a sparse file. |
%c |
File's last status change time in the format returned by the C `ctime' function. |
%Ck |
File's last status change time in the format specified by k, which is the same as for %A. |
%d |
File's depth in the directory tree; 0 means the file is a command line argument. |
%D |
The device number on which the file exists (the st_dev field of struct stat), in decimal. |
%f |
File's name with any leading directories removed (only the last element). |
%F |
Type of the filesystem the file is on; this value can be used for -fstype. |
%g |
File's group name, or numeric group ID if the group has no name. |
%G |
File's numeric group ID. |
%h |
Leading directories of file's name (all but the last
element). If the file name contains no slashes (since it is in the
current directory) the %h specifier expands to ".". |
%H |
Command line argument under which file was found. |
%i |
File's inode number (in decimal). |
%k |
The amount of disk space used for this file in 1K
blocks. Since disk space is allocated in multiples of the filesystem
block size this is usually greater than %s/1024, but it can also be smaller if the file is a sparse file. |
%l |
Object of symbolic link (empty string if file is not a symbolic link). |
%m |
File's permission bits (in octal).
This option uses the `traditional' numbers which most Unix
implementations use, but if your particular implementation uses an
unusual ordering of octal permissions bits, you will see a difference
between the actual value of the file's mode and the output of %m. Normally you will want to have a leading zero on this number, and to do this, you should use the # flag (as in, for example, `%#m'). |
%M |
File's permissions (in symbolic form, as for ls). |
%n |
Number of hard links to file. |
%p |
File's name. |
%P |
File's name with the name of the command line argument under which it was found removed. |
%s |
File's size in bytes. |
%S |
File's sparseness. This is calculated as (BLOCKSIZE*st_blocks / st_size).
The exact value you will get for an ordinary file of a certain length
is system-dependent. However, normally sparse files will have values
less than 1.0, and files which use indirect blocks may have a value
which is greater than 1.0. The value used for BLOCKSIZE is
system-dependent, but is usually 512 bytes. If the file size is zero,
the value printed is undefined. On systems which lack support for st_blocks, a file's sparseness is assumed to be 1.0. |
%t |
File's last modification time in the format returned by the C `ctime' function. |
%Tk |
File's last modification time in the format specified by k, which is the same as for %A. |
%u |
File's user name, or numeric user ID if the user has no name. |
%U |
File's numeric user ID. |
%y |
File's type (like in ls -l). U=unknown type (although this shouldn't happen) |
%Y |
File's type (like %y), plus follow symlinks: L=loop, N=nonexistent |
A `%' character followed by any other character is
discarded, but the other character is printed (don't rely on this, as
further format characters may be introduced). A `%' at the end of
the format argument causes undefined behaviour since there is no
following character. In some locales, it may hide your door keys, while
in others it may remove the final page from the novel you are reading.
The %m and %d directives support the # , 0 and + flags, but the other directives do not, even if they print numbers. Numeric directives that do not support these flags include G, U, b, D, k and n. The `-' format flag is supported and changes the alignment of a field from right-justified (which is the default) to left-justified. |
-prune |
True; if the file is a directory, do not descend into it. If -depth is given, false; no effect. Because -delete implies -depth, you cannot usefully use -prune and -delete together. |
-quit |
Exit immediately. No child processes will be left running,
but no more paths specified on the command line will be processed. For
example, find /tmp/foo /tmp/bar -print -quit will print only /tmp/foo. Any command lines which have been built up with -execdir ... {} + will be invoked before find exits. The exit status may or may not be zero, depending on whether an error has already occurred. |
Handling Unusual Filenames
Many of the actions of find result in the
printing of data which is under the control of other users. This
includes file names, sizes, modification times and so forth. File names
are a potential problem since they can contain any character except `\0' and `/'.
Unusual characters in file names can do unexpected and often
undesirable things to your terminal (for example, changing the settings
of your function keys on some terminals). Unusual characters are handled
differently by various actions, as described below:
-print0, -fprint0 |
Always print the exact filename, unchanged, even if the output is going to a terminal. |
-ls, -fls |
Unusual characters are always escaped. White space,
backslash, and double quote characters are printed using C-style
escaping (for example `\f', `\"'). Other unusual characters are printed using an octal escape. Other printable characters (for -ls and -fls these are the characters between octal 041 and 0176) are printed as-is. |
-printf, -fprintf |
If the output is not going to a terminal, it is printed
as-is. Otherwise, the result depends on which directive is in use. The
directives %D, %F, %g, %G, %H, %Y, and %y expand to values which are not under control of files' owners, and so are printed as-is. The directives %a, %b, %c, %d, %i, %k, %m, %M, %n, %s, %t, %u and %U
have values which are under the control of files' owners but which
cannot be used to send arbitrary data to the terminal, and so these are
printed as-is. The directives %f, %h, %l, %p and %P are quoted. This quoting is performed in the same way as for GNU ls. This is not the same quoting mechanism as the one used for -ls and -fls. If you are able to decide what format to use for the output of find then it is normally better to use `\0' as a terminator than to use newline, as file names can contain white space and newline characters. The setting of the `LC_CTYPE' environment variable is used to determine which characters need to be quoted. |
-print, -fprint |
Quoting is handled in the same way as for -printf and -fprintf.
If you are using find in a script or in a situation where the matched
files might have arbitrary names, you should consider using -print0 instead of -print. |
The -ok and -okdir actions print the current filename as-is.
Operators
Listed in order of increasing precedance:
( expr ) |
Force precedence. Since parentheses are special to the
shell, you will normally need to quote them. Many of the examples in
this manual page use backslashes for this purpose: `\(...\)' instead of `(...)'. |
! expr |
True if expr is false. This character will also usually need protection from interpretation by the shell. |
-not expr |
Same as ! expr, but not POSIX compliant. |
expr1 expr2 |
Two expressions in a row are taken to be joined with an implied "and"; expr2 is not evaluated if expr1 is false. |
expr1 -a expr2 |
Same as expr1 expr2. |
expr1 -and expr2 |
Same as expr1 expr2, but not POSIX compliant. |
expr1 -o expr2 |
Or; expr2 is not evaluated if expr1 is true. |
expr1 -or expr2 |
Same as expr1 -o expr2, but not POSIX compliant. |
expr1 , expr2 |
List; both expr1 and expr2 are always evaluated. The value of expr1 is discarded; the value of the list is the value of expr2.
The comma operator can be useful for searching for several different
types of thing, but traversing the filesystem hierarchy only once. The -fprintf action can be used to list the various matched items into several different output files. |
Environment Variables
LANG |
Provides a default value for the internationalization variables that are unset or null. |
LC_ALL |
If set to a non-empty string value, override the values of all the other internationalization variables. |
LC_COLLATE |
The POSIX standard specifies that this variable affects the pattern matching to be used for the -name option. GNU find uses the fnmatch library function, and so support for `LC_COLLATE' depends on the system library. This variable also affects the interpretation of the response to -ok; while the `LC_MESSAGES' variable selects the actual pattern used to interpret the response to -ok, the interpretation of any bracket expressions in the pattern will be affected by `LC_COLLATE'. |
LC_CTYPE |
This variable affects the treatment of character classes used in regular expressions and also with the -name test, if the system's fnmatch
library function supports this. This variable also affects the
interpretation of any character classes in the regular expressions used
to interpret the response to the prompt issued by -ok. The `LC_CTYPE' environment variable will also affect which characters are considered to be unprintable when filenames are printed. |
LC_MESSAGES |
Determines the locale to be used for internationalised messages. If the `POSIXLY_CORRECT' environment variable is set, this also determines the interpretation of the response to the prompt made by the -ok action. |
NLSPATH |
Determines the location of the internationalisation message catalogues. |
PATH |
Affects the directories which are searched to find the executables invoked by -exec, -execdir, -ok and -okdir. |
POSIXLY_CORRECT |
Determines the block size used by -ls and -fls. If POSIXLY_CORRECT is set, blocks are units of 512 bytes. Otherwise they are units of 1024 bytes.
Setting this variable also turns off warning messages (that is, implies -nowarn) by default, because POSIX requires that apart from the output for -ok, all messages printed on stderr are diagnostics and must result in a non-zero exit status.
When POSIXLY_CORRECT is not set, -perm +zzz is treated just like -perm /zzz if +zzz is not a valid symbolic mode. When POSIXLY_CORRECT is set, such constructs are treated as an error.
When POSIXLY_CORRECT is set, the response to the prompt made by the -ok action is interpreted according to the system's message catalogue, as opposed to according to find's own message translations. |
TZ |
Affects the time zone used for some of the time-related format directives of -printf and -fprintf. |
Examples
find
Running the find command without any options
will locate and print a list of every file in and beneath the current
directory. This includes all files in all subdirectories of the current
directory.
find .
Same as the above command. The "." explicitly tells find that you want the search to begin in the current directory.
find /home/jeff/fruit | grep 'apple'
This command tells find to locate and print a complete list of all files in and beneath the directory /home/jeff/fruit, and to pipe this listing to grep, which filters out any filename which does not contain the text "apple".
find . -name 'apple'
Locate and print a list of any file in or below the current directory whose name is exactly "apple", all lower case letters.
find . -iname 'apple'
Locate and print a list of any file in or below the current directory whose name is "apple", but match the letters case-insensitively. Therefore, files or directories named "Apple", "ApplE", and "ApPLe" will all be listed by this command.
find . -name 'apple' -type f
Locate and print a list of files in or below the current directory whose name is "apple"; do not display directories, sockets, or other non-regular file types.
find . -name 'apple' -type d
Locate a print a list of directories in or below the current directory whose name is "apple"; do not display regular files, or file types other than directory entries.
find . -group dev
Locate and print a list of any file in or below the current directory whose owning group is the dev group.
find . -L
Locate and print a list of any file in or below the current directory, following symbolic links. In other words, display information about the file a symbolic link links to, rather than information about the symlink itself.
find . -atime +1
Locate and print a list of any file in or below the current directory that was last accessed more than 1 day ago.
find . -atime -1
Locate and print a list of any file in or below the current directory that was last accessed less than 1 day ago.
find . -amin +5
Locate and print a list of any file in or below the current directory that was modified more than 5 minutes ago.
find . -amin -5
Locate and print a list of any file in or below the current directory that was modified fewer than 5 minutes ago.
find . -perm 754
Locate and print a list of any file in or below the current directory whose octal permission bits are 755
(user can read, write, and execute; owning group members can read and
execute; others can read only). For more information about permission
bits, see chmod.
find . -perm u=rwx,g=rx,o=r
Same as the above command, but uses a symbolic
representation of the permission bits. Note that the symbolic notation
uses a comma separator and contains no spaces.
find . -size +1M -type f
Locate and print a list of any regular file in or below the current directory whose size is greater than 1 megabyte.
find . -size -5G -type f
Locate and print a list of any regular file in or below the current directory whose size is less than 5 gigabytes.
find . -user jeff
Locate and print a list of any file or directory in or below the current directory owned by the user jeff.
find . -size +1G -exec mv '{}' ~/bigfiles \;
Locate any files in or below the current directory whose size is greater than 1 gigabyte, and execute the mv command on them, moving them into the directory bigfiles in your home directory. The {}
indicates where in the command the found file name should be placed,
and it must be enclosed in quotes. The command must end in an escaped
semicolon ("\;").
find . -size +1G -print0 | xargs -0 -I {} mv {} ~/bigfiles
Locate any files in or below the current directory whose size is greater than 1 gigabyte, and pipe that list to the xargs command, which uses the mv command to move each one of those files into the directory bigfiles in your home directory. This is similar to the above command, but better for several reasons. First, it uses the -print0 option to tell find to create its list separating each filename with a null character rather than a newline;
this makes the list difficult for a human to read, but has the
advantage of making it easier for another program to parse. You should
always use -print0 when piping output to xargs.
Using xargs to execute commands on every file found is generally better than using find's -exec option because of the way it threads each individual command that it spawns.
The -0 argument to xargs tells it to expect the null character as the filename separator (which we specified with find's -print0 option).
The -I {} option tells xargs to replace "{}" with the name of each file it finds. We then form our command using {} where we want the filename to appear.
find . -size +1G -ok mv '{}' ~/bigfiles \;
Using -ok is the same as using -exec, but you will be asked for confirmation before each command is executed.
find . -name '*.jpg' -o -name '*.gif'
Locate any files in or below the current directory whose suffix is ".jpg" or ".gif". The -o option functions as a boolean OR operator; if either of the conditions are true, the file will be included in the list.
find . -maxdepth 2 -name '*.jpg'
Locate any files in or below the current directory whose suffix is ".jpg", but limit subdirectory traversal to 2 levels beneath the current directory. Any subdirectories 3 or more levels deep will not be searched.
find . ! -name '*.jpg'
Locate any files in or below the current directory whose suffix is not ".jpg". The exclamation mark ("!") functions as a boolean NOT operator; it lists only files for which the condition is false.
find /tmp -name core -type f -print0 | xargs -0 /bin/rm -f
Find files named core in or below the directory /tmp and delete them. The -name test comes before the -type test in order to avoid having to call stat on every file.
find $HOME -mtime 0
Search for files in your home directory which have
been modified in the last twenty-four hours. This command works this
way because the time since each file was last modified is divided by 24
hours and any remainder is discarded. That means that to match -mtime 0, a file will have to have a modification in the past which is less than 24 hours ago.
find /sbin /usr/sbin -executable ! -readable
Search for files in your superuser binary directories, /sbin and /usr/sbin, which are executable but not readable.
find . -perm 664
Search for files which have read and write
permission for their owner, and group, but which other users can read
but not write to. Files which meet these criteria but have other
permissions bits set (for example if someone can execute the file) will
not be matched.
find . -perm -664
Search for files which have read and write
permission for their owner and group, and which other users can read,
without regard to the presence of any extra permission bits (for example
the executable bit). This will match a file which has mode 0777, for example.
find . -perm /222
Search for files which are writable by somebody (their owner, or their group, or anybody else).
find . -perm /220
find . -perm /u+w,g+w
find . -perm /u=w,g=w
All three of these commands do the same thing, but
the first one uses the octal representation of the file mode, and the
other two use the symbolic form. These commands all search for files
which are writable by either their owner or their group. The files don't
have to be writable by both the owner and group to be matched; either
will do.
find . -perm -220
find . -perm -g+w,u+w
Both these commands do the same thing; search for files which are writable by both their owner and their group.
find . -perm -444 -perm /222 ! -perm /111
find . -perm -a+r -perm /a+w ! -perm /a+x
These two commands both search for files that are readable for everybody ( -perm -444 or -perm -a+r), have at least one write bit set ( -perm /222 or -perm /a+w) but are not executable for anybody ( ! -perm /111 and ! -perm /a+x, respectively).
cd /source-dir
find . -name .snapshot -prune -o \( \! -name *~ -print0 \) | cpio -pmd0 /dest-dir
This command copies the contents of /source-dir to /dest-dir, but omits files and directories named .snapshot (and anything in them). It also omits files or directories whose name ends in ~, but not their contents. The construct -prune -o \( ... -print0 \) is quite common. The idea here is that the expression before -prune matches things which are to be pruned. However, the -prune action itself returns true, so the following -o
ensures that the right hand side is evaluated only for those
directories which didn't get pruned (the contents of the pruned
directories are not even visited, so their contents are irrelevant). The
expression on the right hand side of the -o is in parentheses only for clarity. It emphasises that the -print0 action takes place only for things that didn't have -prune applied to them. Because the default `and' condition between tests binds more tightly than -o, this is the default anyway, but the parentheses help to show what is going on.
find repo/ -exec test -d {}/.svn -o -d {}/.git -o -d {}/CVS ; -print -prune
Given the following directory of projects and
their associated SCM administrative directories, perform an efficient
search for the projects' roots:
repo/project1/CVS
repo/gnu/project2/.svn
repo/gnu/project3/.svn
repo/gnu/project3/src/.svn
repo/project4/.git
In this example, -prune prevents unnecessary descent into directories that have already been discovered (for example we do not search project3/src because we already found project3/.svn), but ensures sibling directories (project2 and project3) are found.